Fast tomographic reconstruction on multicore computers

نویسندگان

  • Jose Ignacio Agulleiro Baldo
  • José-Jesús Fernández
چکیده

SUMMARY Tomo3D implements a multithreaded vectorized approach to tomographic reconstruction that takes full advantage of the computer power in modern multicore computers. Full resolution tomograms are generated at high speed on standard computers with no special system requirements. Tomo3D has the most common reconstruction methods implemented, namely weighted Back-projection (WBP) and simultaneous iterative reconstruction technique (SIRT). It proves to be competitive with current graphic processor unit solutions in terms of processing time, in the order of a few seconds with WBP or minutes with SIRT. The program is compatible with standard packages, which easily allows integration in the electron tomography workflow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of a Multicore-Optimized Implementation for Tomographic Reconstruction

Tomography allows elucidation of the three-dimensional structure of an object from a set of projection images. In life sciences, electron microscope tomography is providing invaluable information about the cell structure at a resolution of a few nanometres. Here, large images are required to combine wide fields of view with high resolution requirements. The computational complexity of the algor...

متن کامل

Multicore Performance of Block Algebraic Iterative Reconstruction Methods

Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the Algebraic Reconstruction Techniques (ART) and the Simultaneous Iterative Reconstruction Techniques (SIRT), both of which rely on semi-convergence. Block versions of these methods, based on a partitioning of the linear system, are able t...

متن کامل

Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction.

Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaborative...

متن کامل

Iterative Tomographic Image Reconstruction Using Nonuniform Fast Fourier Transforms

Fourier-based reprojection methods have the potential to reduce the computation time in iterative tomographic image reconstruction. Interpolation errors are a limitation of Fourier-based reprojection methods. We apply a min-max interpolation method for the nonuniform fast Fourier transform (NUFFT) to minimize the interpolation errors. Numerical results show that the min-max NUFFT approach provi...

متن کامل

Parallelization of the Fast Multipole Method for Molecular Dynamics Simulations on Multicore Computers

We have parallelized the fast multipole method (FMM) on multicore computers using OpenMP programming model. The FMM is the one of the fastest approximate force calculation algorithms for molecular dynamics simulations. Its computational complexity is linear. Parallelization of FMM on multicore computers using OpenMP has been reported since the multicore processors become increasingly popular. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2011